2023-11-06
今回の目的
非周期信号に対するフーリエ変換を身につける.
周期\(T\)の極限によるフーリエ級数展開からフーリエ変換の導出
前回,以下の周期\(T\)の信号\(x(\cdot)\)に対する複素フーリエ級数展開を行った.
\begin{align}
x(t) = \sum_{k=-\infty}^{\infty}X_k e^{j\omega_k t}
\end{align}
ここで\(\omega_k = \frac{2\pi}{T}k\)である.
このときフーリエ係数は以下の内積の結果,複素数として得られる.
\begin{align}
X_k &= \frac{1}{T}\int_{-T/2}^{T/2} x(t) \times e^{-j\omega_k t} dt
\end{align}
今回は周期\(T\)を無限大にすることによって,非周期信号を波に分解するフーリエ変換について考える.
複素フーリエ級数展開において\(\lim_{T \to \infty}\)をとり,少し変形すると
\begin{align}
x(t) &= \lim_{T \to \infty} \sum_{k=-\infty}^{\infty}X_k e^{j\frac{2\pi}{T}k t}\\
&= \lim_{T \to \infty} \sum_{k=-\infty}^{\infty}\frac{T}{2\pi} X_k e^{j\frac{2\pi}{T}k t} \frac{2\pi}{T}\\
&= \lim_{n \to \infty} \sum_{k=-\infty}^{\infty} n X_k e^{j\frac{k}{n} t} \frac{1}{n}\\
&= \lim_{n \to \infty} \sum_{k=-\infty}^{\infty} g\left (\frac{k}{n} \right ) \frac{1}{n}\
\end{align}
であるが実はこの極限と和という形は区分求積法の考え方で積分にすることができる.
上記の式中では
\begin{align}
\frac{1}{n} &=\frac{2\pi}{T} = \Delta \omega ,\\
g\left (\omega_k \right ) &= \frac{k}{\omega_k} X_k e^{j\omega_k t}\\
&= \frac{kT}{2\pi k} \frac{1}{T}\int_{-T/2}^{T/2} x(t) e^{-j\omega_k t} dt \times e^{j\omega_k t}\\
&= \frac{1}{2\pi}\int_{-T/2}^{T/2} x(t) e^{-j\omega_k t} dt \times e^{j\omega_k t}\\
\end{align}
とした.
高校の数Ⅲで学んだ区分求積法は以下のようなものだった.(ここでは積分と和の極限の関係のイメージを思い出してもらうことを目的とし,あまり厳密な議論は行わない.)
\begin{align}
\lim_{n \to \infty} \sum_{k=0}^{n-1}f\left( \frac{k}{n} \right) \frac{1}{n} &= \int_{0}^{1} f(x) dx
\end{align}
図を見てもらうと良いのだがこれは0から1の範囲で関数\(f\)を幅\(\frac{1}{n}\)の\(n\)個の短冊に分解したものの和の極限をとったものである.
では,積分範囲が区間[-1,1]のとき和の範囲はどのようになるだろうか.この場合以下の図のように短冊を作成することになる.この時関数\(f\)の引数に注意すると総和\(\sum\)の範囲が変化し,
\begin{align}
\lim_{n \to \infty} \sum_{k=-n}^{n-1}f\left( \frac{k}{n} \right) \frac{1}{n} &= \int_{-1}^{1} f(x) dx
\end{align}
となる.
積分範囲が区間\([-a,a]\)のとき和の範囲はどのようになるだろうか.この場合も関数\(f\)の引数に注意すると総和\(\sum\)の範囲が変化し,
\begin{align}
\lim_{n \to \infty} \sum_{k=-an}^{an-1}f\left( \frac{k}{n} \right) \frac{1}{n} &= \int_{-a}^{a} f(x) dx
\end{align}
となる.
そして,\(a \to \infty\)を考えると
\begin{align}
\lim_{n \to \infty}\lim_{a \to \infty} \sum_{k=-an}^{an-1}f\left( \frac{k}{n} \right) \frac{1}{n} &= \int_{-\infty}^{\infty} f(x) dx\\
\lim_{n \to \infty} \sum_{k=-\infty}^{\infty}f\left( \frac{k}{n} \right) \frac{1}{n} &= \int_{-\infty}^{\infty} f(x) dx
\end{align}
区分求積法では
\begin{align}
\lim_{n \to \infty} \sum_{k=-\infty}^{\infty}g\left( \frac{k}{n} \right) \frac{1}{n} &= \int_{-\infty}^{\infty} g(\omega) d\omega
\end{align}
ただし,
\begin{align}
\omega
&= \lim_{\Delta \omega \to 0} k\Delta \omega\\
&= \lim_{T \to \infty}\omega_k \\
&= \lim_{T \to \infty} \frac{2\pi}{T}k \\
&= \lim_{n \to \infty} \frac{k}{n}
\end{align}
また,
\begin{align}
d\omega
&= \lim_{\Delta \omega \to 0} \Delta \omega\\
&= \lim_{T \to \infty} \frac{2\pi}{T} \\
&= \lim_{n \to \infty} \frac{1}{n}
\end{align}
なので\(x(t)\)は
\begin{align}
x(t)
&= \lim_{n \to \infty} \sum_{k=-\infty}^{\infty} g\left (\frac{k}{n} \right ) \frac{1}{n}\\
&= \int_{-\infty}^{\infty} g(\omega) d\omega \\
&= \int_{-\infty}^{\infty} \left( \frac{1}{2\pi}\int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt\right) e^{j\omega t} d\omega \\
\end{align}
ここで\(X(\omega) = \frac{1}{2\pi}\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt\)とおくと
\begin{align}
x(t) &= \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega \\
\end{align}
このとき\(X(\omega)= \frac{1}{2\pi}\int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt\)を関数\(x(t)\)のフーリエ変換とよぶ.
また\(x(t) = \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega\)をフーリエ逆変換と呼ぶ.
フーリエ逆変換と逆フーリエ変換はどちらも同じくフーリエ変換の逆変換を指しているが,どちらを採用するかは書籍によって異なる.
どちらか一方を採用するとしたらどちらだろうか…
手元の書籍でどちらを採用しているか調べてみると,以下のようにフーリエ逆変換が多かった.変換と逆変換の対を意識しているのだろうか.
- フーリエ逆変換 4冊
8834464
{8834464:LYDCT68L},{8834464:KSCEDFJA},{8834464:QZ7HYR6T},{8834464:WC3LRXVH}
1
apa
50
default
1363
https://nakamura.sciotein.com/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22LYDCT68L%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu5927%5Cu77f3%22%2C%22parsedDate%22%3A%221989-06-13%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x5927%3B%26%23x77F3%3B%26%23x9032%3B%26%23x4E00%3B.%20%281989%29.%20%3Ci%3E%26%23x30D5%3B%26%23x30FC%3B%26%23x30EA%3B%26%23x30A8%3B%26%23x89E3%3B%26%23x6790%3B%3C%5C%2Fi%3E.%20%26%23x5CA9%3B%26%23x6CE2%3B%26%23x66F8%3B%26%23x5E97%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu9032%5Cu4e00%22%2C%22lastName%22%3A%22%5Cu5927%5Cu77f3%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%221989-06-13%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-00-007776-7%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A07%3A15Z%22%7D%7D%2C%7B%22key%22%3A%22KSCEDFJA%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu30af%5Cu30e9%5Cu30a4%5Cu30c4%5Cu30a3%5Cu30b0%20and%20Kreyszig%22%2C%22parsedDate%22%3A%222003-11-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x30AF%3B%26%23x30E9%3B%26%23x30A4%3B%26%23x30C4%3B%26%23x30A3%3B%26%23x30B0%3B%20E.%2C%20%26amp%3B%20Kreyszig%2C%20E.%20%282003%29.%20%3Ci%3E%26%23x30D5%3B%26%23x30FC%3B%26%23x30EA%3B%26%23x30A8%3B%26%23x89E3%3B%26%23x6790%3B%26%23x3068%3B%26%23x504F%3B%26%23x5FAE%3B%26%23x5206%3B%26%23x65B9%3B%26%23x7A0B%3B%26%23x5F0F%3B%3C%5C%2Fi%3E%20%28%26%23x8FD1%3B%26%23x85E4%3B%26%23x6B21%3B%26%23x90CE%3B%2C%20%26%23x963F%3B%26%23x90E8%3B%26%23x5BDB%3B%26%23x6CBB%3B%2C%20%26amp%3B%20%26%23x5800%3B%26%23x7D20%3B%26%23x592B%3B%2C%20Trans.%3B%20%26%23x7B2C%3B8%26%23x7248%3B%29.%20%26%23x57F9%3B%26%23x98A8%3B%26%23x9928%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu3068%5Cu504f%5Cu5fae%5Cu5206%5Cu65b9%5Cu7a0b%5Cu5f0f%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22%5Cu30af%5Cu30e9%5Cu30a4%5Cu30c4%5Cu30a3%5Cu30b0%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erwin%22%2C%22lastName%22%3A%22Kreyszig%22%7D%2C%7B%22creatorType%22%3A%22translator%22%2C%22firstName%22%3A%22%5Cu6b21%5Cu90ce%22%2C%22lastName%22%3A%22%5Cu8fd1%5Cu85e4%22%7D%2C%7B%22creatorType%22%3A%22translator%22%2C%22firstName%22%3A%22%5Cu5bdb%5Cu6cbb%22%2C%22lastName%22%3A%22%5Cu963f%5Cu90e8%22%7D%2C%7B%22creatorType%22%3A%22translator%22%2C%22firstName%22%3A%22%5Cu7d20%5Cu592b%22%2C%22lastName%22%3A%22%5Cu5800%22%7D%5D%2C%22abstractNote%22%3A%22%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu3068%5Cu504f%5Cu5fae%5Cu5206%5Cu65b9%5Cu7a0b%5Cu5f0f%22%2C%22date%22%3A%222003-11-01%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-563-01117-8%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A06%3A15Z%22%7D%7D%2C%7B%22key%22%3A%22QZ7HYR6T%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu8239%5Cu8d8a%22%2C%22parsedDate%22%3A%221997-02-25%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x8239%3B%26%23x8D8A%3B%26%23x6E80%3B%26%23x660E%3B.%20%281997%29.%20%3Ci%3E%26%23x30AD%3B%26%23x30FC%3B%26%23x30DD%3B%26%23x30A4%3B%26%23x30F3%3B%26%23x30C8%3B%26%23x30D5%3B%26%23x30FC%3B%26%23x30EA%3B%26%23x30A8%3B%26%23x89E3%3B%26%23x6790%3B%3C%5C%2Fi%3E.%20%26%23x5CA9%3B%26%23x6CE2%3B%26%23x66F8%3B%26%23x5E97%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu30ad%5Cu30fc%5Cu30dd%5Cu30a4%5Cu30f3%5Cu30c8%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu6e80%5Cu660e%22%2C%22lastName%22%3A%22%5Cu8239%5Cu8d8a%22%7D%5D%2C%22abstractNote%22%3A%22%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu306f%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu7d1a%5Cu6570%5Cu3068%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu5909%5Cu63db%5Cu304c%5Cu57fa%5Cu672c%5Cu3060%5Cuff0e%5Cu3057%5Cu304b%5Cu3057%5Cuff0c%5Cu95a2%5Cu6570%5Cu3092%5Cu3042%5Cu308b%5Cu4e09%5Cu89d2%5Cu95a2%5Cu6570%5Cu306e%5Cu548c%5Cu3067%5Cu8868%5Cu308f%5Cu3057%5Cu305f%5Cu308a%5Cuff08%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu7d1a%5Cu6570%5Cuff09%5Cuff0c%5Cu95a2%5Cu6570%5Cu306b%5Cu3042%5Cu308b%5Cu4e09%5Cu89d2%5Cu95a2%5Cu6570%5Cu3092%5Cu304b%5Cu3051%5Cu3066%5Cu7a4d%5Cu5206%5Cu3057%5Cu305f%5Cu308a%5Cuff08%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu5909%5Cu63db%5Cuff09%5Cu3059%5Cu308b%5Cu3053%5Cu3068%5Cu3067%5Cu4f55%5Cu304c%5Cu308f%5Cu304b%5Cu308b%5Cu306e%5Cu304b%5Cuff0e%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu7d1a%5Cu6570%5Cu3068%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu5909%5Cu63db%5Cu306f%5Cu3069%5Cu3046%5Cu4f7f%5Cu3044%5Cu5206%5Cu3051%5Cu308b%5Cu306e%5Cu304b%5Cuff0e%5Cu7d20%5Cu6734%5Cu306a%5Cu7591%5Cu554f%5Cu3092%5Cu89e3%5Cu6c7a%5Cu3057%5Cu306a%5Cu304c%5Cu3089%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu306e%5Cu8003%5Cu3048%5Cu65b9%5Cu3092%5Cu81ea%5Cu7136%5Cu306b%5Cu8eab%5Cu306b%5Cu3064%5Cu3051%5Cu308b%5Cuff0e%22%2C%22date%22%3A%221997-02-25%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-00-007869-6%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A05%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22WC3LRXVH%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu7551%5Cu4e0a%22%2C%22parsedDate%22%3A%222014-09-25%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x7551%3B%26%23x4E0A%3B%26%23x5230%3B.%20%282014%29.%20%3Ci%3E%26%23x5DE5%3B%26%23x5B66%3B%26%23x57FA%3B%26%23x790E%3B%26%23x30D5%3B%26%23x30FC%3B%26%23x30EA%3B%26%23x30A8%3B%26%23x89E3%3B%26%23x6790%3B%26%23x3068%3B%26%23x305D%3B%26%23x306E%3B%26%23x5FDC%3B%26%23x7528%3B%5B%26%23x65B0%3B%26%23x8A02%3B%26%23x7248%3B%5D%3A%200%3C%5C%2Fi%3E%20%28%26%23x65B0%3B%26%23x8A02%3B%26%23x7248%3B%29.%20%26%23x6570%3B%26%23x7406%3B%26%23x5DE5%3B%26%23x5B66%3B%26%23x793E%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu5de5%5Cu5b66%5Cu57fa%5Cu790e%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu3068%5Cu305d%5Cu306e%5Cu5fdc%5Cu7528%5B%5Cu65b0%5Cu8a02%5Cu7248%5D%3A%200%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu5230%22%2C%22lastName%22%3A%22%5Cu7551%5Cu4e0a%22%7D%5D%2C%22abstractNote%22%3A%22%5Cu672c%5Cu66f8%5Cu306f%5Cu520a%5Cu884c%5Cu4ee5%5Cu6765%5Cu597d%5Cu8a55%5Cu3092%5Cu5f97%5Cu3066%5Cu304d%5Cu305f%5Cu30c6%5Cu30ad%5Cu30b9%5Cu30c8%5Cu306e%5Cu65b0%5Cu8a02%5Cu7248.%5Cu7406%5Cu5de5%5Cu7cfb%5Cu306e%5Cu5b66%5Cu751f%5Cu306b%5Cu3068%5Cu3063%5Cu3066%5Cu5fc5%5Cu8981%5Cu306a%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu306e%5Cu77e5%5Cu8b58%5Cu3092%5Cu5177%5Cu4f53%5Cu7684%5Cu306a%5Cu4f8b%5Cu984c%5Cu3092%5Cu901a%5Cu3057%2C%5Cu4f7f%5Cu3048%5Cu308b%5Cu6570%5Cu5b66%5Cu304c%5Cu5b66%5Cu3079%5Cu308b%5Cu3088%5Cu3046%5Cu306b%5Cu914d%5Cu616e%5Cu3057%5Cu305f.%5Cu3055%5Cu3089%5Cu306b%5Cu65b0%5Cu8a02%5Cu306b%5Cu3042%5Cu305f%5Cu3063%5Cu30662%5Cu91cd%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu7d1a%5Cu6570%5Cu306b%5Cu3064%5Cu3044%5Cu3066%5Cu8ffd%5Cu52a0%5Cu3057%5Cu305f.%5Cu308f%5Cu304b%5Cu308a%5Cu3084%5Cu3059%5Cu304f%5Cu5de5%5Cu592b%5Cu3055%5Cu308c%5Cu305f%5Cu597d%5Cu500b%5Cu306e%5Cu6559%5Cu79d1%5Cu30fb%5Cu53c2%5Cu8003%5Cu66f8.%22%2C%22date%22%3A%222014-09-25%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-86481-016-6%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A04%3A21Z%22%7D%7D%5D%7D
大石進一. (1989). フーリエ解析. 岩波書店.
クライツィグ E., & Kreyszig, E. (2003). フーリエ解析と偏微分方程式 (近藤次郎, 阿部寛治, & 堀素夫, Trans.; 第8版). 培風館.
船越満明. (1997). キーポイントフーリエ解析. 岩波書店.
畑上到. (2014). 工学基礎フーリエ解析とその応用[新訂版]: 0 (新訂版). 数理工学社.
- フーリエ変換の逆変換(反転公式) 2冊
8834464
{8834464:YLD6AW99},{8834464:JT4VDEYH}
1
apa
50
default
1363
https://nakamura.sciotein.com/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22JT4VDEYH%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu6d32%5Cu4e4b%5Cu5185%22%2C%22parsedDate%22%3A%221977-02-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x6D32%3B%26%23x4E4B%3B%26%23x5185%3B%26%23x6E90%3B%26%23x4E00%3B%26%23x90CE%3B.%20%281977%29.%20%3Ci%3E%26%23x30D5%3B%26%23x30FC%3B%26%23x30EA%3B%26%23x30A8%3B%26%23x89E3%3B%26%23x6790%3B%26%23x3068%3B%26%23x305D%3B%26%23x306E%3B%26%23x5FDC%3B%26%23x7528%3B%3C%5C%2Fi%3E.%20%26%23x30B5%3B%26%23x30A4%3B%26%23x30A8%3B%26%23x30F3%3B%26%23x30B9%3B%26%23x793E%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu89e3%5Cu6790%5Cu3068%5Cu305d%5Cu306e%5Cu5fdc%5Cu7528%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu6e90%5Cu4e00%5Cu90ce%22%2C%22lastName%22%3A%22%5Cu6d32%5Cu4e4b%5Cu5185%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%221977-02-01%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-7819-0134-3%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A04%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22YLD6AW99%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22%5Cu4eca%5Cu6751%22%2C%22parsedDate%22%3A%221976-11-05%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%26%23x4ECA%3B%26%23x6751%3B%26%23x52E4%3B.%20%281976%29.%20%3Ci%3E%26%23x7269%3B%26%23x7406%3B%26%23x3068%3B%26%23x30D5%3B%26%23x30FC%3B%26%23x30EA%3B%26%23x30A8%3B%26%23x5909%3B%26%23x63DB%3B%3C%5C%2Fi%3E.%20%26%23x5CA9%3B%26%23x6CE2%3B%26%23x66F8%3B%26%23x5E97%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu7269%5Cu7406%5Cu3068%5Cu30d5%5Cu30fc%5Cu30ea%5Cu30a8%5Cu5909%5Cu63db%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu52e4%22%2C%22lastName%22%3A%22%5Cu4eca%5Cu6751%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%221976-11-05%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-00-021572-5%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A03%3A09Z%22%7D%7D%5D%7D
洲之内源一郎. (1977). フーリエ解析とその応用. サイエンス社.
今村勤. (1976). 物理とフーリエ変換. 岩波書店.
- 逆フーリエ変換 1冊
8834464
{8834464:BF8FGIMH}
1
apa
50
default
1363
https://nakamura.sciotein.com/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22BF8FGIMH%22%2C%22library%22%3A%7B%22id%22%3A8834464%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22M.R.%5Cu30b9%5Cu30d4%5Cu30fc%5Cu30b2%5Cu30eb%22%2C%22parsedDate%22%3A%221982-10-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EM.R.%26%23x30B9%3B%26%23x30D4%3B%26%23x30FC%3B%26%23x30B2%3B%26%23x30EB%3B.%20%281982%29.%20%3Ci%3E%26%23x30E9%3B%26%23x30D7%3B%26%23x30E9%3B%26%23x30B9%3B%26%23x5909%3B%26%23x63DB%3B%3C%5C%2Fi%3E%20%28%26%23x571F%3B%26%23x4E95%3B%26%23x8AA0%3B%2C%20Trans.%29.%20%26%23x30DE%3B%26%23x30B0%3B%26%23x30ED%3B%26%23x30A6%3B%26%23x30D2%3B%26%23x30EB%3B%26%23x51FA%3B%26%23x7248%3B.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22book%22%2C%22title%22%3A%22%5Cu30e9%5Cu30d7%5Cu30e9%5Cu30b9%5Cu5909%5Cu63db%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%22%2C%22lastName%22%3A%22M.R.%5Cu30b9%5Cu30d4%5Cu30fc%5Cu30b2%5Cu30eb%22%7D%2C%7B%22creatorType%22%3A%22translator%22%2C%22firstName%22%3A%22%5Cu8aa0%22%2C%22lastName%22%3A%22%5Cu571f%5Cu4e95%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%221982-10-01%22%2C%22language%22%3A%22%5Cu65e5%5Cu672c%5Cu8a9e%22%2C%22ISBN%22%3A%22978-4-89501-054-2%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222023-11-06T01%3A02%3A41Z%22%7D%7D%5D%7D
M.R.スピーゲル. (1982). ラプラス変換 (土井誠, Trans.). マグロウヒル出版.
また,Google Scholarで調べたところ,逆フーリエ変換の方が多かった(2023年時点).
“フーリエ逆変換" 1640件
“逆フーリエ変換" 3600件
どちらともいえない結果になったが,書籍をより重視して本ページではフーリエ逆変換を採用しようと思う(EMANの物理学でもフーリエ逆変換を採用している).
どちらが良いか自分の基準が感覚的にも説明できるようになれば追記する.また,理学寄りの分野ではフーリエ逆変換が好まれるといううわさもあるが真偽は確かめられていない.
ディスカッション
コメント一覧
まだ、コメントがありません